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Abstract

Chronic kidney disease poses a significant global health threat and is increasingly
recognized as a silent killer worldwide. Unfortunately, lack of awareness about the
disease and the challenges in early detection contribute to high mortality rates and
severe suffering among affected individuals. Machine learning techniques have emerged
as valuable tools for early disease identification and prediction, providing medical
experts with fast and accurate diagnostic support. In this study, we employed machine
learning techniques to predict chronic kidney disease. The dataset used in our analysis
contained 25 features, encompassing both numerical and nominal values, alongside the
corresponding class labels for each instance. To ensure data quality, we performed
preprocessing steps to handle missing values. Subsequently, we employed logistic
regression as a feature selection method to identify the most relevant predictors. Our
analysis revealed that among the initially considered 19 features, the following 8
features demonstrated strong associations with chronic kidney disease: coronary artery
disease, appetite, bilateral pedal edema, anemia, specific gravity, albumin, blood urea,
and hemoglobin. We have used 10 different Machine Learning models to classify CKD
and found that using the logistic feature selection increases the accuracy of some models
as well as reducing model overfitting in the case of Random Forest and Extra tree.
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Introduction 1

Kidney plays an important role in the human body, from maintaining fluid balance to 2

maintaining a role in regularizing blood pressure [1]. So, a kidney failure not only 3

affects the kidney but it also gives rise to a lot of diseases such as cardiovascular and 4

diabetes [2]. There are different kidney diseases which can cause kidney failure for 5

example kidney cancer which has seen 403,262 new worldwide cases in the year 2018 [3] 6

or even kidney stones which have been associated with an increased risk of lots of 7

diseases such as cardiovascular diseases, diabetes, and hypertension [4]. The kidney 8

disease which leads to more kidney failure is the Chronic Kidney Disease (CKD). CKD 9

affects over 10% of the population worldwide and it was ranked 16th among the leading 10

causes of death in 2016, and is expected to rise to 5th ranked by 2040. CKD has been 11

an important contributor to chronic non-communicable diseases (NCDs) and Goal 3.4 of 12

SDGs shows that the world sees CKD as a significant burden for individuals, health 13

care systems and societies [5]. According to the Global Burden of Disease CKD 14

Collaboration, Mauritius is ranked second in CKD prevalence and death due to CKD 15

with 218,092 CKD patients and 1070 deaths in 2017(GBD Chronic Kidney Disease 16

Collaboration, 2020). CKD is normally defined as an abnormality of kidney function or 17

structure for ≥ 3 months. CKD is a silent disease, as most sufferers have no symptoms 18

until kidney function drops to 15–20% of normal. A blood or urine test is used to verify 19

whether the estimated glomerular filtration rate (eGFR) is less than 15ml/min/1.73m2
20

or the presence of albuminuria (ie, urine albumin ≥ 30mg per 24 hours or urine 21

albumin-to-creatinine ratio [ACR] ≥ 30mg/g). Several studies have concluded a lot of 22

causes for CKD such as cardiovascular disease, diabetes, hypertension, Inherited 23

diseases or systemic infections and others [6, 7]. However, there are no clear risk factors 24

which can conclude that a person will have CKD or not. Early diagnosis of CKD is a 25

big challenge for nephrologists. With the growing number of chronic kidney patients, 26

and the high costs of diagnosis and treatment, computer-assisted diagnostics to assist 27

medical experts in making diagnostic decisions are being looked into. 28

With the emergence of the big data era, new ways for constructing a predictive 29

model that previously relied on classical statistics become accessible. Machine learning 30

(ML) is a subset of artificial intelligence (AI) that enables a machine to execute a task 31

without explicit instructions. ML algorithms may be taught to capture the underlying 32

patterns of sample data and generate predictions about actual data based on the 33

learned knowledge when employed in predictive modelling. ML reflects more 34

complicated maths functions than standard statistics and typically leads in superior 35

performance in predicting a result that is determined by a broad number of factors with 36

non-linear, complex interactions. Recently, ML has been used in a number of research 37

and exhibited a high degree of performance that outperformed conventional statistics 38

and even humans. Further research implemented ML to predict early detection of 39

diseases such as colorectal cancer [8], skin cancer [9], alzheimer disease [10], early-stage 40

cancer (Machine-Learning Models Can Help Detect Early-Stage Cancer) and so on. In 41

this study, we will be focusing on some ML algorithms to predict the binary 42

classification of CKD disease while also exploring a regression approach to identify the 43

potential risk factors contributing to CKD. 44

The organization of the paper is thus as follows: In Section 2, an overview of related 45

works, followed by the research methodology in which the the CKD data preparation 46

and the logistic regression as feature selection are provided. Section 3 focuses on the 47

fitting of the various ML models and providing the possible classification of CKD by 48

making uses the best features resulting from the logistic regression. Section 4 comprises 49

the discussions on the several significant factors. The concluding remarks and some 50

limitations are provided in Section 5. 51
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Materials and methods 52

Related works 53

A variety of studies have been conducted to predict CKD phases using various 54

classifications systems. Current research approaches for detecting CKD using Machine 55

Learning algorithms and performance indicators are summarised in this section. 56

Using the UCI Machine learning Repository CKD dataset, [11] conducted a research 57

to compare different machine learning algorithms in detecting CKD. Before the data is 58

being trained, they applied several preprocessing steps; removing all rows having null 59

data, encode all the nominal features, finally a feature selection is used. The principal 60

component analysis (PCA) algorithm was used as the feature selection tool and out of 61

23 features, only 10 features were selected. Those 10 features include serum creatinine, 62

albumin, specific gravity, sugar, blood glucose random, potassium, packed cell volume, 63

white blood cells count, Red blood cell count and diabetes. They obtained the best 64

performance with XgBoost with an accuracy of 0.9916. The adaBoost, random forest, 65

gradient boosting, LGBM, and Extra Tree show the same accuracy (0.9833). [12] have 66

explored using different parameters to develop a system to classify CKD. In this study, 67

they have analysed classifying CKD in 160 different scenarios with 5 different 68

algorithms namely Neural Networks (ANN), Naive Bayes, k-Nearest Neighbors, Support 69

Vector Machine (SVM) and J48. The best result of 97.66% of accuracy, 96.13% of 70

sensitivity, 98.78% of specificity and 98.31% of precision was achieved with J48 with an 71

oversampled data and using cross-validation of 10 folds. 72

Meanwhile, [13]designed an improved version of the Teacher Learner Based 73

Optimization (TLBO) algorithm in the classification of the UCI CKD dataset. The 74

algorithm has identified 16 features including blood pressure, specific gravity, albumin, 75

red blood cells, pus cell, pus cell clumps, blood glucose random, blood urea, serum 76

creatinine, potassium, hemoglobin, red blood cell count, diabetes mellitus, appetite, 77

pedal edema and anemia. They used 3 classifiers namely the SVM, Gradient boosting 78

and a CNN model and the latter scored the highest accuracy of 95.25% with features 79

selected from the improved TLBO algorithms. [14] designed a deep learning model and 80

compared it to traditional algorithms such as Support Vector Machine , K-Nearest 81

Neighbor, Logistic regression, Random Forest, and Naive Bayes classifier. The proposed 82

model achieved the highest accuracy and they also performed a feature importance 83

using Recursive Feature Elimination (RFE) on the UCI CKD dataset and found that 84

hemoglobin, Specific Gravity, Serum Creatinine, Red Blood Cell Count, Albumin, 85

Packed Cell Volume, and Hypertension were the key features in determining CKD with 86

the said dataset. Using the same dataset, [15] have used another feature selection tool 87

known as the Correlation-based feature subset selection (CFS). Before the feature 88

selection, the rows having null values were removed. Then, using CFS, the dataset was 89

reduced from 23 features to 8 features which includes specific gravity, albumin, serum 90

creatinine, hemoglobin, packed cell volume, white blood cell count, red blood cell count, 91

hypertension. The reduced dataset was classified using the Levenberg–Marquardt 92

classifier and obtained an average accuracy of 99.78%. 93

A deep neural network-based Multi-Layer Perceptron Classifier is proposed in [16] to 94

identify CKD in patients. The algorithm was trained using data from 400 people and 95

took into account a variety of symptoms and indicators such as age, blood sugar, red 96

blood cell count, and so on. Experiments show that the suggested model performs 97

flawlessly in classification tasks. The authors’ goal is to facilitate to introducing Deep 98

Learning algorithms to learning from dataset attribute reports and effectively detecting 99

CKD. The suggested Deep Neural Network model for chronic kidney disease diagnosis 100

outperforms common machine learning models such as support vector machines and 101

naive Bayes classifiers by 100% of accuracy. In [17] the authors use functional magnetic 102
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resonance imaging (fMRI) as a new noninvasive method to identify early stages of CKD. 103

A total of 21 articles with 1472 patients were included for analysis. The results 104

indicated fMRI techniques had great efficacy in assessing early stages and different 105

stages of CKD, among which DTI, IVIM, and BOLD exerted great superiority in 106

differentiating early CKD patients from the general population, while DWI showed the 107

advantage in distinguishing different CKD stages. 108

In [18] PC-AKI was defined based on the serum creatinine criteria of the Kidney 109

Disease. Six feature selection methods were used to identify the most influential 110

predictors from 79 candidate variables. Deep neural networks (DNNs) were used to 111

establish the model and compared with logistic regression analyses. Model 112

discrimination was evaluated by area under the receiver operating characteristic curve 113

(AUC). Low-risk and high-risk cutoff points were set to stratify patients. 14 114

variables-based DNN model had significantly better performance than the logistic 115

regression model with AUC being 0.939 (95% confidence interval: 0.916–0.958) and 116

0.940 (95% confidence interval: 0.909–0.954) in the internal and external validation 117

cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC 118

≥ 0.800). 119

A large number of works have been carried out as listed above including works on 120

the comparison of the performance of algorithms in classification including classic 121

algorithms and neural networks on the one hand and on the other hand, some authors 122

seek to optimise certain parameters of the algorithms in order to obtain better 123

performance in CKD classification. However, the use of logistic regression as a feature 124

selection to select the appropriate variables before using the classic model machines 125

remains undeveloped. This is the reason which lead to this study. The theory behind 126

this study is that classic methods can produce better performance if implemented with 127

the right variables (hence the idea of logistic regression as feature selection). 128

Data specifications 129

In this study, the Chronic Kidney dataset from UCI machine repository is being used. 130

The dataset includes 400 patient records with 25 different attributes such as diabetes, 131

serum creatinine and others as shown in the x-axis of Fig 1. This is a binary 132

classification, as we have used two classes for predicting CKD and NOT CKD. The data 133

needs to be processed before using Logistic regression as the dataset has some missing 134

values and some typing errors. First of all, the number of missing values is calculated 135

for each attribute as shown in Figure X. Dealing with null values becomes a critical step 136

in data preprocessing. As per [19], if an attribute contains more than 20 percent of 137

missing values and imputation is used, it can have substantial differences on the 138

prediction model. Thus, attributes such as red blood cells, blood sodium, blood 139

potassium, white blood cell count and red blood cell count, having more than 80 140

missing values, are removed from the data. The data is then divided in two categories: 141

Nominal and numerical columns. The method of imputation used is essential as it can 142

have a large impact on the performance of the models. KNN imputer is a popular 143

technique for imputing missing values and it is frequently used in place of traditional 144

imputation methods such as mean and median imputation [20,21]. For numerical 145

columns, the missing data are replaced using the kNN imputer. As in the case of 146

nominal columns, the missing data are imputed with the mode value of this attribute. 147

Fig 1 shows the missing data in the original dataset 148
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Fig 1. Missing Values in dataset

Logistic regression 149

Logistic regression is a classification algorithm that is often used in machine learning for 150

feature selection. It is a straightforward and quick method for identifying the most 151

significant features in a dataset and developing a predictive model capable of reliably 152

classifying new observations. Logistic regression is used to describe data and to explain 153

the relationship between one dependent binary variable and one, more nominal, ordinal, 154

interval, or ratio-level independent variables. To build a logistic regression model, we 155

select the features that will be used to predict the target variable. The selection of 156

features is an important step in the modeling process, as it can significantly impact the 157

performance of the model [22]. 158

Logistic regression equation 159

In 1972, Nelder and Wedderburn proposed Generalized Linear Model (glm) which 160

include Logistic Regression Model. GLM model was developed in an effort to provide a 161

method for applying linear regression to issues that were not directly suited for linear 162

regression application. In fact, they proposed a class of different models (linear 163

regression, ANOVA, Poisson Regression etc) which included logistic regression as a 164

special case [23]. The fundamental equation of generalized linear model is: 165

g(E(y)) = α+ βx1 + Y x2 (1)

Where, g() is the link function, E(y) is the expectation of target variable and 166

α+ βx1 + x2 is the linear predictor (α, β, to be predicted). The role of link function is 167

to ‘link’ the expectation of y to linear predictor. 168

Logistic function 169

Logistic regression uses a logistic function called a sigmoid function to map predictions 170

and their probabilities. The sigmoid function refers to an S-shaped curve that converts 171

any real value to a range between 0 and 1. Furthermore, if the sigmoid function output 172

(estimated probability) exceeds a predetermined threshold, the model predicts that the 173

instance belongs to that class. The model predicts that the instance does not belong to 174

the class if the calculated probability is less than the predefined threshold. For example, 175

if the output of the sigmoid function is above 0.5, the output is considered as 1. On the 176

other hand, if the output is less than 0.5, the output is classified as 0. Furthermore, if 177
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the graph is drawn further to the left, the anticipated value of y will be 0 and vice versa. 178

In other words, if the sigmoid function returns 0.65, it means that the event, has a 65% 179

chance of occuring [24]. The sigmoid function, often known as an activation function in 180

logistic regression, is defined as: 181

f(x) =
1

1 + e−x
(2)

where, e = base of natural logarithms value = numerical value one wishes to 182

transform. 183

The following equation represents logistic regression: 184

P =
1

1 + e−(β0+β1x)
(3)

As, the equation of the best fit line in linear regression is: 185

y = β0 + β1x (4)

Assume we’re using probabilities (P ) instead of y. But there is a problem here: the 186

value of (P ) will either exceed 1 or fall below 0, and we know that the Probability range 187

is (0-1). To overcome this issue we take “odds” of P (Odds can always be positive which 188

means the range will always be (0,+∞). It’s defined as the ratio of the probability of 189

success and probability of failure): 190

P = β0 + β1x (5)

P

1− P
= β0 + β1x (6)

The issue here is that the range is confined, and we don’t want a restricted range 191

because it would reduce our correlation. By limiting the range, we are reducing the 192

quantity of data points, and as we reduce our data points, our correlation will fall. A 193

variable with a narrow range is difficult to model. To control this we take the log of 194

odds which has a range from (−∞,+∞). 195

log

(
P

1− P

)
= β0 + β1x (7)

We want to predict probability rather than the log of odds so we just need a function of 196

P. To do so, multiply both sides by the exponent and then solve for P. 197

eln[
P

1−P ] = e(β0+β1x) (8)

P

1− P
= e(β0+β1x) (9)

P = e(β0+β1x) − Pe(β0+β1x) (10)

P = P
(e(β0+β1x)

P
− e(β0+β1x)

)
(11)

1 + e(β0+β1x) =
e(β0+β1x)

P
(12)

P =
e(β0+β1x)

1 + e(β0+β1x)
(13)
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Now, divide each term by e(β0+β1x) and we will get: 198

P =
1

1 + e−(β0+β1x)
(14)

This is our logistic function, often known as a sigmoid function. 199

Machine learning algorithms 200

In this section, we will give a brief description of the ten machine learning algorithms 201

that have been used in this work. 202

(1)-K-Nearest Neighbors (KNN). K-Nearest Neighbors (KNN) is a 203

non-parametric algorithm originally proposed by Fix and Hodges Jr. in 1951. This 204

algorithm operates based on the principle of classifying new data points by considering 205

the majority class of their k-nearest neighbors. To determine the class label of a new 206

data point, KNN calculates the distances between the new point and the existing data 207

points. The class assignment is then determined through a majority vote among the 208

k-nearest neighbors. Over the years, KNN has been widely applied across various 209

domains, including educational settings and intrusion detection in computer networks, 210

showcasing its versatility and effectiveness [25,26]. 211

(2)-Decision Tree Classifier The Decision Tree Classifier, introduced by Quinlan 212

in 1986, is a machine learning model that constructs a tree-like structure to represent 213

decisions and their potential outcomes. This algorithm partitions the dataset by 214

evaluating different features, resulting in branches that correspond to decision rules. At 215

each node of the tree, the algorithm selects the most informative feature to split the 216

data, with the goal of maximizing information gain or reducing impurity. Decision trees 217

have demonstrated their utility in diverse domains, including data stream mining and 218

comparative analyses of various decision tree algorithms [27,28]. 219

(3)-Random Forest Classifier. The Random Forest Classifier, proposed by 220

Breiman in 2001, is an ensemble learning technique that leverages multiple decision 221

trees for classification tasks. This model generates a collection of decision trees by 222

utilizing random subsets of the training data and random subsets of the features. Each 223

decision tree in the forest independently predicts the class, and the final prediction is 224

determined through a majority voting scheme. Random Forest Classifier has found 225

applications in diverse domains, including the prediction of student performance and 226

the identification of financial distress [29,30]. 227

(4)-AdaBoost Classifier. The AdaBoost (Adaptive Boosting) Classifier, 228

introduced by Freund and Schapire in 1996, is a boosting algorithm designed to 229

construct a robust classifier by combining multiple weak classifiers. In this approach, 230

each training instance is assigned a weight, and weak classifiers are iteratively trained 231

on misclassified instances, with their importance determined by the weights. The final 232

prediction is then generated by aggregating the weighted predictions of the weak 233

classifiers. AdaBoost has been successfully applied in various domains, including face 234

detection and financial distress prediction [31–33]. 235

(5)-Gradient Boosting Classifier. The Gradient Boosting Classifier, originally 236

proposed by Friedman in 2001, is an ensemble learning technique that sequentially 237

combines weak classifiers. Each subsequent classifier in the sequence focuses on 238

rectifying the errors made by the preceding classifiers. This approach employs gradient 239

descent optimization to minimize the loss function by iteratively introducing weak 240

classifiers trained on the negative gradients of the loss function. Gradient Boosting has 241

demonstrated its effectiveness in a wide range of tasks, including efficient training of 242

convolutional neural networks and prediction of high-dimensional sparse outputs [34, 35]. 243
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(6)-Stochastic Gradient Boosting (SGB). Stochastic Gradient Boosting (SGB), 244

an extension of the Gradient Boosting algorithm proposed by Friedman in 2002, 245

introduces a stochastic element into the training process. In contrast to the 246

conventional Gradient Boosting approach, SGB randomly selects a subset of samples 247

from the training set at each iteration. This random sampling not only reduces 248

computation time but also helps prevent overfitting. By incorporating stochasticity, 249

SGB promotes increased diversity among the weak learners and enhances the overall 250

generalization performance of the model. SGB has been successfully applied in various 251

domains, including recommender systems and anomaly detection tasks, showcasing its 252

versatility and effectiveness [36–38]. 253

(7)- XGBoost. XGBoost (Extreme Gradient Boosting), introduced by Chen and 254

Guestrin in 2016, is an optimized gradient boosting framework that incorporates several 255

advancements over traditional gradient boosting methods. These enhancements include 256

a regularized learning objective, parallel tree construction, and hardware optimization. 257

The XGBoost algorithm is renowned for its efficiency, scalability, and exceptional 258

performance across a wide range of machine learning tasks. It has found successful 259

applications in diverse domains, including fraud detection and recommendation systems, 260

where its capabilities have proven valuable [39,40]. 261

(8)-CatBoost Classifier. The CatBoost Classifier, proposed by Prokhorenkova et 262

al. in 2018, is a gradient boosting algorithm that stands out for its ability to effectively 263

handle categorical features. This classifier incorporates innovative techniques such as 264

categorical feature encoding, ordered boosting, and gradient-based ranking. By 265

leveraging these techniques, CatBoost aims to deliver accurate predictions while 266

minimizing the need for extensive preprocessing of categorical data. The algorithm has 267

demonstrated successful applications in diverse domains, including customer behavior 268

prediction and click-through rate prediction, highlighting its versatility and 269

effectiveness [41,42]. 270

(9)-Extra Trees Classifier. The Extra Trees (Extremely Randomized Trees) 271

Classifier, introduced by Geurts et al. in 2006 [43], is an ensemble learning technique 272

that extends the Random Forest algorithm. The Extra Trees Classifier introduces an 273

extra level of randomness by selecting random feature subsets and random thresholds 274

for splitting at each node of the decision tree. This added randomness enhances the 275

diversity among the individual trees, resulting in reduced variance and improved 276

robustness to noise in the data. The Extra Trees Classifier has been successfully applied 277

in various domains, such as drug resistance prediction (Gupta et al., 2019) [44], 278

highlighting its versatility and effectiveness in different contexts. 279

(10)-LGBM Classifier. The LGBM (Light Gradient Boosting Machine) Classifier, 280

proposed by Ke et al. in 2017 [45], is a gradient boosting framework renowned for its 281

efficiency and scalability. This classifier leverages a technique called Gradient-based 282

One-Side Sampling (GOSS) to intelligently select and prioritize data instances during 283

the training phase, leading to expedited and more precise model construction. The 284

LGBM Classifier has been successfully employed in a diverse range of machine learning 285

tasks, including disease prediction and high-dimensional sparse output prediction, 286

demonstrating its versatility and efficacy [45,46]. 287
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Results and discussion 288

Logistic regression 289

Logistic regression is a type of regression model that can be use to understand the 290

relationship between one or more predictor variables and a response variable when the 291

response variable is binary. In this study, we deals multiple predictor variables and one 292

response variable, then we have used multiple logistic regression, which uses the 293

following formula to estimate the relationship between the variables: 294

Log
[ p(X)

(1− p(X))

]
= β0 + β1x1 + β2x2 + . . . + βkxk (15)

Multiple logistic regression uses the following null and alternative hypotheses: 295

H0 : β1 = β2 = . . . = βk = 0 (16)

HA : β1 = β2 = . . . = βk ̸= 0 (17)

The null hypothesis states that all coefficients in the model are equal to zero. In 296

other words, none of the predictor variables have a statistically significant relationship 297

with the response variable, y. The alternative hypothesis states that not every coefficient 298

is simultaneously equal to zero. After implementation of the logistic regression, we find 299

the results bellow, from this results, we focus on P-Value to selection our best feature. 300

Results: Logit 301

================================================================= 302

Model: Logit Pseudo R-squared: 0.715 303

Dependent Variable: class AIC: 139.3832 304

Date: 2023-05-02 13:07 BIC: 207.6120 305

No. Observations: 268 Log-Likelihood: -50.692 306

Df Model: 18 LL-Null: -178.05 307

Df Residuals: 249 LLR p-value: 8.9678e-44 308

Converged: 1.0000 Scale: 1.0000 309

No. Iterations: 9.0000 310

------------------------------------------------------------------- 311

Coef. Std.Err. z P>|z| [0.025 0.975] 312

------------------------------------------------------------------- 313

x1 -0.2432 0.3131 -0.7765 0.4375 -0.8569 0.3706 314

x2 -0.1962 0.3268 -0.6004 0.5483 -0.8367 0.4443 315

x3 -0.0518 0.2826 -0.1833 0.8546 -0.6058 0.5021 316

x4 0.0308 0.3591 0.0857 0.9317 -0.6731 0.7347 317

x5 0.2247 0.3361 0.6686 0.5038 -0.4340 0.8834 318

x6 -0.4681 0.3113 -1.5038 0.1326 -1.0782 0.1420 319

x7 0.4757 0.3209 1.4825 0.1382 -0.1532 1.1047 320

x8 0.6983 0.3429 2.0362 0.0417 0.0261 1.3705 321

x9 -0.5067 0.3246 -1.5611 0.1185 -1.1428 0.1295 322

x10 0.1260 0.2926 0.4307 0.6667 -0.4475 0.6996 323

x11 0.3650 0.3218 1.1343 0.2567 -0.2657 0.9957 324

x12 -2.1280 0.3725 -5.7132 0.0000 -2.8581 -1.3980 325

x13 1.1430 0.3559 3.2118 0.0013 0.4455 1.8405 326

x14 0.3750 0.3354 1.1180 0.2636 -0.2824 1.0323 327

x15 0.3719 0.4125 0.9016 0.3673 -0.4366 1.1804 328

x16 -0.5996 0.3453 -1.7363 0.0825 -1.2764 0.0772 329
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x17 0.3100 0.4010 0.7732 0.4394 -0.4759 1.0959 330

x18 -1.6174 0.7778 -2.0795 0.0376 -3.1418 -0.0929 331

x19 -0.1744 0.6785 -0.2571 0.7971 -1.5042 1.1554 332

================================================================= 333

Where x1 = urine pus cell, x2 = pus cell clumps, 334

x3 = bacteria, x4 = hypertension, x5= diabetes mellitus, 335

x6 = coronary artery disease, 336

x7 = appetite, x8 = bilateral pedal edema, 337

x9 = anemia, x10 = age, x11 = blood pressure, 338

x12 = specific gravity, x13 = albumin, 339

x14 = sugar, x15 = blood glucose random, 340

x16 = blood urea, x17 = serum creatinine, 341

x18 = haemoglobin, x19 = packed cell volume. 342

If p-value (P > |z|) is less than 0.05, we reject the null hypothesis. In other words, 343

there is a statistically significant relationship between the combination the the 344

predictors and the output variable. According our analysis, the most important features 345

show the p values less or equal to 0.1(≤ 0.1), in others words the most important 346

features are those who are significant at 10%, 5% and 1%. This shows that these 347

independent variables have a significant impact on dependent variable prediction. 348

Finally, the following 8 features out of 19 features are the best one for our models 349

according to logistic regression result: coronary artery disease, appetite, bilateral 350

pedal edema, anemia, specific gravity, albumin, blood urea, haemoglobin. 351

Studies have indicated that these features either contribute to the development of CKD 352

or are consequences of patients already having CKD: 353

1. Coronary artery disease (CAD) is a well-known risk factor for the development 354

and progression of CKD. The presence of CAD in individuals with CKD can 355

exacerbate renal dysfunction due to reduced blood flow to the kidneys. 356

2. Appetite is another important clinical indicator in CKD patients and can serve as 357

a proxy for nutritional status. Decreased appetite, also known as anorexia, is 358

commonly observed in individuals with CKD. 359

3. Bilateral pedal edema, characterized by swelling in both feet and ankles, is a 360

clinical manifestation commonly associated with CKD. Bilateral pedal edema can 361

serve as a visible sign of fluid overload and can be indicative of advanced CKD 362

stages. 363

4. Anemia is a prevalent complication in CKD patients and is primarily attributed to 364

impaired production of erythropoietin, a hormone produced by the kidneys that 365

stimulates red blood cell production. Effective management of anemia in CKD 366

involves monitoring haemoglobin levels which is also another one of the features. 367

5. Specific gravity is a measure of urine concentration and is often used as a marker 368

to assess kidney function. In CKD, impaired renal tubular function can result in 369

the inability to concentrate urine effectively, leading to decreased specific gravity. 370

Monitoring specific gravity can help evaluate the kidneys’ ability to concentrate 371

and dilute urine, providing insights into the severity and progression of CKD. 372

6. Albumin is a protein normally present in the blood and plays a crucial role in 373

maintaining fluid balance. In CKD, damage to the glomerular filtration barrier 374

can result in increased urinary excretion of albumin, leading to albuminuria. 375

Persistent albuminuria is considered a hallmark of kidney damage and is 376

associated with the progression of CKD and increased cardiovascular risk. 377
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7. Blood urea, specifically blood urea nitrogen (BUN), is a commonly measured 378

parameter in assessing kidney function. In CKD, impaired kidney function leads 379

to a decreased ability to filter and excrete urea, resulting in elevated blood urea 380

levels. 381

By considering these eight features—coronary artery disease, appetite, bilateral pedal 382

edema, anemia, specific gravity, albumin, blood urea, and haemoglobin—you have 383

obtained valuable insights into various aspects related to Chronic kidney disease. These 384

features provide a comprehensive view of the disease process, ranging from 385

cardiovascular implications to nutritional status, fluid balance, renal function, and 386

complications such as anemia. So will will uses those selected variable in the next 387

section for model building. 388

Models implementation 389

After having found our best features, we proceed to the Model building. To do so, we 390

choose to build these models in two ways: the first using the features from logistic 391

regression result (only 8 features) and the second using all the features from original 392

dataset (19 features at all). In this study, 10 machine learning algorithms namely KNN, 393

Decision Tree Classifier, Random Forest Classifier,Ada Boost Classifier, Gradient 394

Boosting Classifier, Stochastic Gradient Boosting, XgBoost, Cat Boost, Extra Trees 395

Classifier, LGBM Classifier has been used to classify chronic kidney disease data. 396

As performance metrics evaluations, we used confusion matrix which is nothing but 397

a tabular representation of Actual vs Predicted values. This helps us to find the 398

accuracy of the model and avoid overfitting. Confusion matrix incorporate 4 elements 399

namely, True Positive or TP (The total number of observations that are normal and the 400

model classifies them as normal), False Negative or FN (The total number of 401

observations that are good but the model classifies them as bad), False Positive or FP 402

(The total number of observations that are bad but the model classifies them as good), 403

True Negative or TN (The total number of observations that are bad and the model 404

classifies them as bad). 405

From the confusion matrix, the accuracy of each model is evaluated as follow : 406

Ai =
TPi + TNi

TPi + TPi + FPi + FNi
(18)

where i = 1, 2, ....10 our different models. 407

From that same confusion matrix, others performance metrics like Specificity 408

knowing as True Negative Rate (TNR), Sensitivity knowing as True Positive 409

Rate(TPR), False Positive Rate(FPR) and False Negative Rate (FNR) can be derived 410

as illustrated below: 411

TNR =
TN

TN + FP
(19)

FPR = 1− TNR (20)

TPR =
TP

TP + FN
(21)

FNR =
FN

FN + TP
(22)

It should be noted that TNR + FPR should be equal to 1 and the same for TPR + 412

FNR. 413
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Specificity and Sensitivity plays a crucial role in deriving ROC curve. Receiver 414

Operating Characteristic(ROC) summarizes the model’s performance by evaluating the 415

trade offs between true positive rate (sensitivity) and false positive rate(1- specificity). 416

For plotting ROC, we assume p < 0.5 since we are more concerned about success rate. 417

ROC summarizes the predictive power for all possible values of p > 0.5. The area under 418

curve (AUC), referred to as index of accuracy(A) or concordance index, is a perfect 419

performance metric for ROC curve. Higher the area under curve, better the prediction 420

power of the model. 421

Results analysis 422

In this section, we will show some findings of this study. As mentioned earlier, we have 423

implemented a total of ten (10) different algorithms. First, we trained these models 424

with the eight variables resulting from the logistic regression and second, we trained 425

these same models with all nineteen (19) variables of the original data-set. We used the 426

confusion matrix as a performance evaluation metric because of the use of the 427

classification models. From this confusion matrix we extracted the accuracy of the 428

models as shown in table 2 with the corresponding plot in Fig 2 and the different ROC 429

curves as well as the area under the ROC curve named AUC as show in table 3 as well 430

as the corresponding plot line in Fig 3. 431

Table 1. Accuracy of Models.

Accuracy of Models with Logistic Regression Accuracy of Models without Logistic Regression

Model’s Names Accuracy Model’s Names Accuracy
KNN 0.931818 KNN 0.840909
Decision Tree 0.986970 Decision Tree 0.986012
Random Forest 0.994848 Random Forest 1.000000
Ada Boost 0.992121 Ada Boost 0.992424
Gradient Boosting 0.987273 Gradient Boosting 0.984848
Stochastic Gradiant Boost 0.997273 Stochastic Gradiant Boost 0.984848
XgBoost 0.989697 XgBoost 0.992424
Cat Boost 0.962121 Cat Boost 0.977273
Extra Trees 0.997273 Extra Trees 1.000000
LGBM 0.997273 LGBM 0.992424

Table showing the accuracy of the models, after logistic regression (left) and before logistic regression (right).

Table 2. AUC of Models.

AUC of Models with Logistic Regression AUC of Models without Logistic Regression

Model’s Names AUC Model’s Names AUC
KNN 0.970362 KNN 0.924355
Decision Tree 0.986012 Decision Tree 0.989583
Random Forest 0.999752 Random Forest 1.000000
Ada Boost 0.976845 Ada Boost 0.994048
Gradient Boosting 0.998760 Gradient Boosting 1.000000
Stochastic Gradiant Boost 0.998264 Stochastic Gradiant Boost 1.000000
XgBoost 0.997148 XgBoost 0.999752
Cat Boost 0.999008 Cat Boost 0.999504
Extra Trees 0.999504 Extra Trees 1.000000
LGBM 0.999256 LGBM 1.000000

Table showing the AUC of the models, after logistic regression (left) and before logistic regression (right).
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Fig 2. Comparison of model performance in terms of accuracy criteria

Fig 3. Comparison of model performance in terms of AUC criteria

Fig 2 shows that the proposed method (after logistic regression) is quite efficient as 432

out of the ten models built, five of them, namely KNN, Gradient Boosting, Stochastic 433

Gradient Boost, Cat Boost and LGBM, give higher accuracy than the models before 434

logistic regression. It should be noted that the models after logistic regression are 435

trained with only 8 variables unlike the models before logistic regression which are 436

trained with all 19 variables but the results show that 5 constructed models offer 437

superior accuracy which shows the power of logistic regression as a feature selection. We 438

found a slight case of over-fitting for the models before logistic regression especially for 439

Random Forest and Extra tree which gave an accuracy of 100% but logistic regression 440

corrected this and gave accuracy of 0.999752 and 0.999504 respectively after logistic 441

regression. Fig 3 also shows that different AUCs of the models before and after logistic 442

regression are almost the same overall. 443
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Conclusion 444

The aims of this study was to analyse Chronic Kidney Disease data using logistic 445

regression as feature selection. Firstly, prepossessing steps to handle missing values was 446

carried out. Secondly, we employed Logistic Regression method to identify the most 447

relevant predictors. Our analysis revealed that among the initially considered 19 448

features, 8 of them demonstrated strong associations with chronic kidney disease. Ten 449

(10) different classification Machine Learning algorithms was used to classify CKD and 450

we found that using the logistic regression as feature selection, we can increases the 451

accuracy of models as well as reducing model overfitting. Among the models build, five 452

of them suit best namely: Random Forest, Ada Boost,Stochastic Gradiant Boost, Extra 453

Trees and LGBM classifiers. Those models are well suited to classify CKD. The future 454

work include: 455

• Extending the model to others type of disease. 456

• Extending the length of the forecast horizon taking into account the noisiness. 457

• Applying the Prediction Interval techniques, bootstrap strategies and other types 458

of machine learning models including Gated Recurrent Units (GRUs), Long Short Term 459

Memory (LSTM) and Transformers to CKD prediction. 460
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